国产在线观看911_久久国产福利免费_人妻无码精品免费在线_国产操B视频在线观看

電話(huà):0392-3280885  手機(jī):13603920885
         料倉(cāng)雙置式振動(dòng)疏通卸料機(jī),采用專(zhuān)利技術(shù),料倉(cāng)內(nèi)置高頻振動(dòng)襯板,瞬時(shí)疏通料倉(cāng)結(jié)拱堵塞,防止料倉(cāng)瘀塞續(xù)堵,短時(shí)間內(nèi)解決物料粘結(jié)掛壁,層層堆積形成倉(cāng)容減小造成的堵塞…同樣適用于溜槽以及導(dǎo)料槽不同工礦條件下的疏通卸料...廣泛應(yīng)用于料倉(cāng)結(jié)拱,料倉(cāng)堵塞,料倉(cāng)疏通,料倉(cāng)卸料。產(chǎn)品分類(lèi)如下:料倉(cāng)雙置式振動(dòng)疏通卸料機(jī)、工業(yè)污泥疏通卸料機(jī)、有色粉礦倉(cāng)疏通卸料機(jī)、煤泥混煤疏通卸料機(jī)、有色尾礦疏通卸料機(jī)、粉體工程料倉(cāng)疏通卸料機(jī)、砂巖倉(cāng)疏通卸料機(jī)、粘土倉(cāng)疏通卸料機(jī)、石膏倉(cāng)疏通卸料機(jī)
料倉(cāng)雙置式振動(dòng)疏通卸料機(jī),致力于解決煤倉(cāng)/料倉(cāng)/結(jié)拱/堵塞/破拱/疏通/卸料等技術(shù)難題,替代傳統(tǒng)破拱設(shè)備解決料倉(cāng)結(jié)拱堵塞/溜槽結(jié)拱堵塞/煤倉(cāng)結(jié)拱堵塞/原煤倉(cāng)結(jié)拱堵塞/混煤倉(cāng)結(jié)拱堵塞/緩沖倉(cāng)結(jié)拱堵塞/原料倉(cāng)結(jié)拱堵塞/裝車(chē)站結(jié)拱堵塞等疏通排料技術(shù)難題...

電話(huà):0392-3280885
手機(jī):13603920885
聯(lián)系人:張經(jīng)理
The double-set vibrating dredge-unloader of the silo, the introduction of German technology, the built-in high-frequency vibrating lining plate of the silo, the high-efficient dredging of the silo arch blocking, the stop of the silo blocking, the complete solution of the material bonding hanging wall, pile up layer by layer to form the blockage caused by the reduction of bin capacity... also applicable to the chute and the chute under different conditions of dredge discharge..
The double-mounted vibrating dredger is dedicated to solving a series of technical problems, such as coal bunker/silo/arching/clogging/arch-breaking/dredging/discharging, etc. , replace air cannon to solve the difficult technical problems of clearing and discharging materials, such as chute arching blocking/coal bunker arching blocking/raw coal bunker arching blocking/mixed coal bunker arching blocking/buffer bunker arching blocking/raw material silo arching blocking/loading station arching blocking etc. .
Tel: 0392-3280885
Cell Phone: 13603920885
Contact: manager Zhang
您的位置:首頁(yè) > 新聞資訊 > 詳細(xì)內(nèi)容
鋰離子電池硅碳負(fù)極材料的制備與應(yīng)用

摘 要: 本文對(duì)鋰離子電池中硅碳負(fù)極材料的納米結(jié)構(gòu)、摻雜改性以及三元復(fù)合材料的電化學(xué)性能及相關(guān)機(jī)理進(jìn)行了總結(jié),目的是研究不同改性方法對(duì)硅碳負(fù)極材料的電化學(xué)性能的影響,以找到較為優(yōu)異的硅碳負(fù)極改性方法.經(jīng)過(guò)對(duì)比我們發(fā)現(xiàn),在已被研究的各種硅碳負(fù)極材料中,通過(guò)采用納米結(jié)構(gòu)、雜原子摻雜以及三元復(fù)合的方法均可顯著提升硅碳負(fù)極材料的電化學(xué)性能.后對(duì)硅碳負(fù)極材料發(fā)展現(xiàn)狀進(jìn)行了簡(jiǎn)要分析,并對(duì)其研究前景進(jìn)行了展望.

目錄:

1 硅碳負(fù)極材料的合成

2 硅碳負(fù)極材料

3 摻雜型硅碳負(fù)極材料

4 展望

隨著能源技術(shù)的更新?lián)Q代,在電子、可再生能源系統(tǒng)和電動(dòng)汽車(chē)等各個(gè)領(lǐng)域,滿(mǎn)足日益增長(zhǎng)的能源需求越來(lái)越迫切.鋰離子電池因其具有較高的容量和穩(wěn)定的循環(huán)壽命,被認(rèn)為是滿(mǎn)足便攜式電子器件、電動(dòng)及混合動(dòng)力汽車(chē)日益增加的能源需求的新型電源[1-4].在不同負(fù)極材料中,硅的理論比容量(高可達(dá)4 200 mA&dot;h g-1)是傳統(tǒng)碳負(fù)極理論比容量(約372 mA&dot;h g-1)的10倍,這吸引了極大的關(guān)注,且硅較低的脫嵌鋰電位(<0.5 V vs. Li/Li+)使得鋰離子電池能獲得更高的功率[5].但是,由于硅負(fù)極材料較低的導(dǎo)電性和嚴(yán)重的體積膨脹(>300%),硅顆粒發(fā)生開(kāi)裂和粉碎,因?yàn)榛钚圆牧系膿p耗和不良的電接觸導(dǎo)致了緩慢的動(dòng)力學(xué)性能和短暫的循環(huán)壽命,故硅負(fù)極材料在鋰電池中的應(yīng)用并不可觀(guān)[6].納米管、納米線(xiàn)、納米棒、納米片、多孔、中空或帶防護(hù)涂層的封裝硅顆粒等硅納米結(jié)構(gòu)通常應(yīng)用于硅基負(fù)極材料的改善結(jié)構(gòu)和電學(xué)性能結(jié)構(gòu)[7-8].另外,制備這些納米結(jié)構(gòu)的方法(如氣-液-固法,磁控濺射和化學(xué)氣相沉積)都有技術(shù)復(fù)雜和步驟多等缺點(diǎn)[9-10].石墨和多孔碳因在鋰化過(guò)程中體積變化相對(duì)較小(如石墨的體積膨脹率僅為10.6%)且具有良好的循環(huán)穩(wěn)定性和電導(dǎo)率而成為極具潛力的負(fù)極材料.與硅材料相比,碳材料具有與其相似的性質(zhì),且它們可以緊密結(jié)合,所以碳材料自然地被選為用于分散硅顆粒的襯底材料(即分散載體)[11-12].通過(guò)硅碳復(fù)合,鋰離子電池可獲得更高的比容量、更好的導(dǎo)電性與循環(huán)穩(wěn)定性 [13].

本文主要研究了各種鋰離子電池硅碳復(fù)合負(fù)極材料的合成、結(jié)構(gòu)和電化學(xué)性能,綜述了硅碳負(fù)極材料的研究現(xiàn)狀.

1 硅碳負(fù)極材料的合成

1.1氣相沉積法

氣相沉積法包括化學(xué)氣相沉積法(CVD)和物理氣相沉積法(PVD).CVD是一種用于生產(chǎn)高質(zhì)量、高性能的固體材料的化學(xué)過(guò)程,這個(gè)方法通常應(yīng)用于半導(dǎo)體領(lǐng)域的薄膜制造.PVD是一種真空沉積法,可以用來(lái)制作薄膜和涂層.PVD是材料從凝聚態(tài)轉(zhuǎn)變?yōu)闅鈶B(tài),然后再轉(zhuǎn)變?yōu)槟蹜B(tài)薄膜的一個(gè)過(guò)程.常見(jiàn)的PVD過(guò)程是濺射和蒸發(fā).PVD常用于制造具有機(jī)械、光學(xué)、化學(xué)或電學(xué)性能的薄膜 [14].

1.2高溫固相合成

高溫固相合成是一種在高溫(1 000~1 500 ℃ )下,通過(guò)固體界面之間的接觸、反應(yīng)、成核和晶體生長(zhǎng)反應(yīng)生成大量的復(fù)合氧化物的方法.高溫固相合成應(yīng)是制備硅碳復(fù)合材料一種常用方法,為了防止惰性相硅碳的生成,反應(yīng)溫度通?刂圃1200 ℃ [15].在反應(yīng)過(guò)程中,溫升速率、反應(yīng)前驅(qū)物的選擇和反應(yīng)溫度的高低將直接影響材料的結(jié)構(gòu)和性能.高溫固相合成技術(shù)因工藝簡(jiǎn)單,工藝參數(shù)易于控制,重現(xiàn)性好而被廣泛應(yīng)用.

1.3機(jī)械合金化

與高溫固相合成法相反,機(jī)械合金化法制備的材料通常具有更小的粒度,更大的比表面積和更均勻的組織[16].機(jī)械合金化是一種固態(tài)粉末加工技術(shù),涉及重復(fù)冷焊、壓裂和在高能球磨機(jī)中重新焊接混合粉末粒子,從而獲得均勻材料的方法,已被證明能夠從混合元素或預(yù)合金粉末中合成各種平衡和非平衡合金相[17].

1.4靜電紡絲

靜電紡絲是一種利用靜電來(lái)噴射聚合物溶液或聚合物的帶電細(xì)絲的纖維生產(chǎn)方法,其直徑一般為幾百納米.靜電紡絲技術(shù)融合了電噴涂和傳統(tǒng)的溶液干法紡絲纖維的優(yōu)點(diǎn)[18].該過(guò)程不需要使用化學(xué)凝固或高溫來(lái)從溶液中產(chǎn)生紡絲,這使得該工藝特別適用于大而復(fù)雜的微粒生產(chǎn)纖維 [19-20].靜電紡絲技術(shù)是可利用各種材料制備納米纖維的一種低成本、工藝簡(jiǎn)單的通用方法,改進(jìn)工藝后的同軸靜電紡絲技術(shù)可制備納米管和核殼結(jié)構(gòu)納米纖維[21].

2 硅碳負(fù)極材料

碳納米材料因其獨(dú)特的性能而有著許多技術(shù)應(yīng)用,包括輕量化構(gòu)造、電子、能源、環(huán)保、醫(yī)藥等領(lǐng)域[22-23].納米材料的物理和化學(xué)性能不同于普通材料甚至更優(yōu)于普通材料,這些優(yōu)異的性能通常由材料組織的微結(jié)構(gòu)決定[24-25].碳材料因其良好的機(jī)械特性,高導(dǎo)電性和化學(xué)穩(wěn)定性,在無(wú)黏結(jié)劑電極和輕質(zhì)電極研究領(lǐng)域備受關(guān)注.近年來(lái),納米線(xiàn)、納米纖維、納米管、納米球等硅碳納米結(jié)構(gòu)經(jīng)常被應(yīng)用于鋰離子電池中.

2.1硅碳納米線(xiàn)

納米線(xiàn)是納米級(jí)應(yīng)用的一種,產(chǎn)業(yè)化的納米線(xiàn)直徑分布在50~100 nm[26].圖1為碳硅核殼納米線(xiàn)的SEM形貌. 將非晶硅包覆在碳納米線(xiàn)上制備的碳硅核殼納米線(xiàn)材料[27]作為高功率和長(zhǎng)壽命鋰電池負(fù)極的容量可達(dá)2 000 mA&dot;h g-1且具有良好的循環(huán)壽命.

圖1 碳硅核殼納米線(xiàn)的SEM形貌[27]

Fig.1 SEM image of C-Si NWs after 5 cycles [27]

該材料初始庫(kù)倫效率為90%,隨后周期的庫(kù)倫效率仍高達(dá)98%~99.6%.研究發(fā)現(xiàn),均勻和完整的碳涂層可以緩解硅納米線(xiàn)完全鋰化產(chǎn)生的膨脹. 催化生長(zhǎng)的碳納米纖維(CNFs)的應(yīng)用已經(jīng)有十幾年.碳納米纖維已經(jīng)產(chǎn)業(yè)化,且具有良好的機(jī)械強(qiáng)度,高的導(dǎo)熱性和導(dǎo)電性[28,29].混合納米結(jié)構(gòu)Si/CNFs負(fù)極在比容量和循環(huán)壽命方面表現(xiàn)出優(yōu)越的性能.碳納米纖維不僅提供了良好的應(yīng)變/應(yīng)力松弛層,而且還提供了電子的傳輸途徑[30-31].

2.2 硅碳納米纖維

Shu等[32]利用CVD法研制了空心CNFs/Si復(fù)合材料,所得的負(fù)極材料具有優(yōu)異的倍率特性.在0.6 C下,CNFs/Si電極的初始放/充電容量分別為1 197.8和941.4 mA&dot;h g-1,循環(huán)20周期后的可逆充電容量為733.9 mA&dot;h g-1,其容量保持率高達(dá)77.9%.CNFs/Si負(fù)極材料表現(xiàn)出優(yōu)異的電化學(xué)性能,其不僅提供硅顆粒之間的導(dǎo)電橋和集電器,也作為一個(gè)抑制硅顆粒體積膨脹的緩沖區(qū).

圖2 純硅與CNFs/Si循環(huán)前后電極結(jié)構(gòu)比較[32].

Fig.2 Comparison of pure Si and CNFs/Si electrodes before and after cycling[32].

2.3硅碳納米管

近年,許多研究熱點(diǎn)都集中在基于碳納米管的鋰電池負(fù)極材料的制備上[33].以往關(guān)于含碳納米管的硅負(fù)極材料的研究主要集中在通過(guò)簡(jiǎn)單的機(jī)械混合、碳納米管在硅材料上的生長(zhǎng)、碳納米管表面硅原子的植入或者在碳納米管薄膜上沉積硅以形成Si/CNT薄膜等來(lái)使硅與碳納米管外表面產(chǎn)生電子連接.但是,由于硅顆粒的不均勻分布,碳納米管的約束效應(yīng)并不令人滿(mǎn)意,使硅在納米空間內(nèi)并沒(méi)有收到碳納米管網(wǎng)絡(luò)的足夠約束[34].Zhao等[35]采用CVD法原位合成了一種硅/非晶碳納米管核殼復(fù)合負(fù)極材料(Si/ACNT).在100 mA g-1下,該電極容量可達(dá)1496 mA&dot;h g-1,在300個(gè)循環(huán)周期后仍有80%容量保持率,具有良好的循環(huán)穩(wěn)定性.

圖 3 不同尺寸的Si/ACNT復(fù)合材料的TEM圖[35]

Fig.3 TEM images of different microstructure size of the Si/ACNT composite [35]

2.4 硅碳納米球

碳納米球由石墨結(jié)構(gòu)中分布不連續(xù)的玻璃態(tài)石墨層組成[36].由于碳納米球具有高比表面積,良好的化學(xué)穩(wěn)定性和熱穩(wěn)定性等特性,其可以用于制備高強(qiáng)度高密度的碳/碳復(fù)合材料、液相色譜柱、高比表面積活性炭材料、鋰電池負(fù)極材料以及一系列高性能碳材料.碳微球具有很強(qiáng)的吸附能力,可以重復(fù)利用[37-38].

圖4 化學(xué)還原后及未進(jìn)行化學(xué)還原的不同尺寸下的Si/C復(fù)合材料的TEM圖[39]

Fig.4 TEM images of different microstructure size of Si/carbon nanospheres composite [39]

Zhou等[39]用簡(jiǎn)單的化學(xué)方法制備了硅/碳納米球.通過(guò)熱處理,硅顆粒被非晶碳包覆,從而抑制了原始硅的集聚,緩解了硅在循環(huán)過(guò)程中巨大的體積膨脹.在200 mA g-1下,該材料的初始可逆容量為888.6 mA&dot;h g-1.在50次循環(huán)后,電極的充電容量仍有610.7 mA&dot;h g-1.在鋰化過(guò)程中,硅碳微球能有效地緩沖硅納米顆粒的體積膨脹/收縮,具有優(yōu)異的電化學(xué)性能和循環(huán)穩(wěn)定性.

3 摻雜型硅碳負(fù)極材料

在摻雜型硅碳負(fù)極材料中,硅和碳緊密地結(jié)合形成了一個(gè)穩(wěn)定均勻的系統(tǒng).在充放電過(guò)程中,硅原子作為電化學(xué)反應(yīng)的活性中心,碳原子作為鋰化的載體.另外,碳載體還可作為電子傳輸通道和支撐結(jié)構(gòu).

3.1氮摻雜型硅/碳負(fù)極材料

由于氮摻雜所造成的缺陷,氮摻雜的碳具有較高的導(dǎo)電性和電化學(xué)活性,并有助于界面中鋰離子的傳輸[40].氮摻雜層可以防止電極材料與電解液的直接接觸且可提高復(fù)合材料和鋰離子在電極和電解液界面上傳輸速率[41].氮摻雜的碳涂層在促進(jìn)和保持穩(wěn)定的SEI層中提供了一個(gè)有效的電子傳輸途徑,促進(jìn)了脫嵌鋰反應(yīng) [42].此外,研究發(fā)現(xiàn)摻雜氮的碳涂層比原始碳涂層有著更高的導(dǎo)電性和鋰離子遷移率[43-44].

Shen等[45]將用離子液體輔助制備的硅@氮摻雜碳(Si@NC)納米顆粒與硅@碳(Si@C)納米顆粒進(jìn)行比較.在420 mA g-1下,經(jīng)過(guò)100次循環(huán)后,所制備的Si@NC復(fù)合材料表現(xiàn)出較高的可逆容量,約為725 mA&dot;h g-1,是同種方法制備的Si@C材料的兩倍(360 mA&dot;h g-1).該材料改進(jìn)的電化學(xué)性能得益于納米復(fù)合材料穩(wěn)定的核殼結(jié)構(gòu),更重要的是氮元素?fù)诫s到碳?xì)ぶ?包覆的氮摻雜碳層不僅改善了材料的導(dǎo)電性,且緩解了鋰化過(guò)程體積膨脹產(chǎn)生的應(yīng)力.

圖5 不同電流密度下,Si@N-C、Si@C和Si納米顆粒的循環(huán)性能 [45].

Fig.5 Cycling performance and rate capability of Si@N-doped carbon, Si@C and Si nanoparticles at different current density [45]

3.2硅/碳/石墨負(fù)極材料

硅負(fù)極材料大的缺陷是當(dāng)硅大鋰化時(shí),其體積膨脹率高達(dá)300%[46].減少硅體積膨脹效應(yīng),并充分利用硅超高可逆容量的一種方法是將石墨與其結(jié)合[47].石墨因其良好穩(wěn)定性、低成本、低工作電壓等優(yōu)點(diǎn)成為了新型復(fù)合負(fù)極材料的理想選擇[48].石墨、碳和硅復(fù)合材料可提供可觀(guān)的可逆容量,并可有效減少負(fù)極材料的體積膨脹[49].

Wang等[50]通過(guò)噴霧干燥自組裝法將熱解碳和天然石墨(NG)包覆在亞微米硅片上成功制備了Si/C@NGs復(fù)合材料.該材料的初始昆侖效率高達(dá)82.8%,在0.1 A g-1下循環(huán)100個(gè)周期后仍有1524.0 mAh g-1的容量保留,這種層級(jí)結(jié)構(gòu)的材料與純硅相比有著多層碳涂層和空隙,有效地緩解了硅充放電過(guò)程中的體積膨脹.

圖6 天然石墨顆粒、Si / SAN@NGs、碳化后Si / C@NGs和Si / C@NGs復(fù)合截面的SEM圖 [50].

Fig.6 SEM images of NG particles, Si/SAN@NGs composite, Si/C@NGs composite after carbonization and cross profile of Si/C@NGs composite, respectively[50].

3.3硅/碳/石墨烯負(fù)極材料

近年來(lái),石墨烯由于具有高導(dǎo)電性、高強(qiáng)度、高化學(xué)穩(wěn)定性、超高的比表面積和開(kāi)放的多孔結(jié)構(gòu)等特性,具有對(duì)鋰電池電極材料體積變化的靈活約束作用,被認(rèn)為是有前景的碳材料[51].由于大比表面積、高導(dǎo)電性和良好的放電能力,石墨烯可以提高硅基復(fù)合電極的電化學(xué)性能,改善了大電流密度下的循環(huán)穩(wěn)定性,是一種極具吸引力的碳材料[52-53].

Pan等[54]采用工業(yè)通用的噴霧干燥法和隨后的煅燒工藝制備了硅@碳@石墨烯球形微結(jié)構(gòu)復(fù)合材料(Si@C@RGO).碳?xì)ず腿嵝允┑慕Y(jié)合可有效提高復(fù)合材料的電導(dǎo)率,并可適應(yīng)硅在循環(huán)過(guò)程中巨大的體積變化.在100 mA g-1的低電流密度下,該種材料的初始可逆性為1 599 mA&dot;h g-1,當(dāng)在200 mA g-1下循環(huán)多次后的容量保持率高達(dá)94.9%.此外,即使在2 000 mA g-1的高電流密度下,Si@C@RGO負(fù)極也仍有951 mA&dot;h g-1的高可逆比容量.研究證明,石墨烯是一種防止硅在脫嵌鋰過(guò)程中結(jié)構(gòu)變化的有效緩沖元素,且可極大地提高鋰電池的可逆容量、循環(huán)穩(wěn)定性和倍率特性[55].

圖7 Si@C和Si@C@RGO復(fù)合材料電化學(xué)性能比較 [54]

Fig.7 Comparision of the electrochemical performance of Si@C and Si@C@RGO composite[54]

4 展 望

一般來(lái)說(shuō),對(duì)硅碳負(fù)極材料的研究主要是針對(duì)更高能量密度、更大充放電性能、更高循環(huán)穩(wěn)定性和更高安全性鋰離子電池方面的發(fā)展.表面涂覆改性是電極材料制備的基本工藝,可提高材料加工性能,提高電解質(zhì)的相容性,降低不可逆容量,提高初始庫(kù)侖效率.對(duì)材料的比例和循環(huán)性能的改進(jìn)研究主要集中在用摻雜、改性或噴霧干燥等方法對(duì)材料進(jìn)行納米化,提高電子和離子的傳輸速率以改善材料的導(dǎo)電性和穩(wěn)定性.具有良好的機(jī)械彈性、高電導(dǎo)率和化學(xué)穩(wěn)定性的碳材料在鋰離子電池硅碳負(fù)極材料的發(fā)展中具有巨大的潛力.此外,對(duì)于鋰離子電池硅碳負(fù)極材料脫嵌鋰機(jī)理的研究,以及與硅碳材料更相容的粘結(jié)劑和電解液的探索,也是未來(lái)50年的研究熱點(diǎn).

參考文獻(xiàn)

[1] BENAOUADJ M, ABOUBOU A, AYAD M Y, et al. Fuel cells, batteries and super-capacitors stand-alone power systems management using optimal/flatness based-control[J]. Technologies & Materials for Renewable Energy, 2016, 1758 (1): 333-341.

[2] NITTA N, WU F, LEE J T, et al. Li-ion battery materials: present and future[J]. Materials Today, 2015, 18(5): 252-264.

[3] HUANG B, LI X, WANG Z, et al. A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0.8Co0.15Al0.05O2 synthesized by an in situ oxidizing-coating method[J]. Journal of Power Sources, 2014, 252(252): 200-207.

[4] SZCZECH J R, JIN S. Nanostructured silicon for high capacity lithium battery anodes[J]. Energy&Environmental Science, 2011, 4(1): 56-72.

[5] ZHU C, HAN K, GENG D, et al. Achieving high-performance silicon anodes of lithium-ion batteries via atomic and molecular layer deposited surface coatings: an overview[J]. Electrochimica Acta, 2017, 251, 710-728.

[6] WU H, CHAN G, CHOI J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012, 7: 310-315.

[7] LU Z, WONG T, NG T W, et al. Facile synthesis of carbon decorated silicon nanotube arrays as anode material for high-performance lithium-ion batteries[J]. RSC Advances, 2014, 4(5): 2440-2446.

[8] FAN Y, ZHANG Q, XIAO Q, et al. High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology [J]. Carbon, 2013, 59(7): 264-269.

[9] LV Y, WU Z, FANG Y, et al. Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries[J]. Apl Materials, 2014, 2 (11): 366-366.

[10] QIAN J, MA J, HE W, et al. Facile synthesis of prussian blue derivate-modified mesoporous material via photoinitiated thiol-ene click reaction for cesium adsorption[J]. Chemistry-An Asian Journal, 2015, 10 (8):1738-1744

[11] MA T, ZHAO Q, WANG J, et al. A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance regeable lithium-ion battery[J]. Angewandte Chemie, 2016, 55 (22): 6428-6432.

[12] DING W, LEI X, OUYANG C. Coordination of lithium ion with ethylene carbonate electrolyte solvent: A computational study[J]. International Journal of Quantum Chemistry, 2016, 116 (2):97-102.

[13] MA X, LIU M, GAN L, et al. Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(9): 4135.

[14] BÖKE F, GINER I, KELLER A, et al. Plasma-enhanced chemical vapor deposition (PE-CVD) yields better hydrolytical stability of biocompatible SiOx thin films on implant alumina ceramics compared to rapid thermal evaporation physical vapor deposition (PVD)[J]. Acs Applied Materials & Interfaces, 2016, 8 (28):17805-17816.

[15] FUKUI H, OHSUKA H, HINO T, et al. Influence of polystyrene/phenyl substituents in precursors on microstructures of Si-O-C composite anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(1): 371-378.

[16] KUMAR M A, BEYERLEIN I J, LEBENSOHN R A, et al. Role of alloying elements on twin growth and twin transmission in magnesium alloys[J]. Materials Science and Engineering: A, 2017, 706:295-303.

[17] SALLEH E M, RAMAKRISHNAN S, HUSSAIN Z. Synthesis of biodegradable Mg-Zn alloy by mechanical alloying: effect of milling time[J]. Procedia Chemistry, 2016, 19: 525-530.

[18] ZIABICKI A. Fundamentals of fiber formation[M]. John Wiley and Sons, London, 1976.

[19] WANG B, SUN L, WU N, et al. Combined synthesis of aligned SiC nanofibers via electrospinning and carbothermal reduction[J]. Ceramics International, 2017, 43:10619-10623.

[20] WANG P, CHENG L, ZHANG Y, et al. Synthesis of SiC nanofibers with superior electromagnetic wave absorption performance by electrospinning[J]. Journal of Alloys and Compounds, 2017, 716:306-320.

[21] LIU Q, ZHU J, ZHANG L, et al. Recent advances in energy materials by electrospinning[J]. Renewable and Sustainable Energy Reviews, 2017, 81, 1825-1858.

[22] QIANG X, LI H, ZHANG Y, et al. Synthesis and toughening effect of SiC nanowires wrapped by carbon nanosheet on C/C composites[J]. Journal of Alloys and Compounds, 2016, 676:245-250.

[23] DONG Z, MENG J, ZHU H, et al.Synthesis of SiC nanowires via catalyst-free pyrolysis of silicon-containing carbon materials derived from a hybrid precursor[J]. Ceramics International, 2017, 43:11006-11014.

[24] FARHAN S, WANG R, LI K. Characterization of latticed SiC nanowires containing coating for carbon foam using carbonization activated pack cementation process[J]. Journal of Alloys and Compounds, 2016, 682: 695-705.

[25] SHEN Q, LI H, LI L, et al. SiC nanowire reinforced carbon/carbon composites with improved interlaminar strength[J]. Materials Science&Engineering A, 2016, 651:583-589.

[26] YUAN Y, WU L, ZHI J. Carbon nanowires obtained by tempering diamantane dicarboxylic acid inside carbon nanotubes[J]. Angewandte Chemie, 2014, 53: 14326-14351.

[27] CUI L, YANG Y, HSU C, et al. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries[J]. Nano Letters, 2009, 9(9):3370-3375.

[28] ZHOU S, CHEN J, GAN L, et al. Scalable production of self-supported WS2/CNFs by electrospinning as the anode for high-performance lithium-ion batteries[J]. Science Bulletin, 2016, 61(3):227-235.

[29] ZHAO H, YIN H, YU X X, et al. In2O3 nanoparticles/carbon fiber hybrid mat as free-standing anode for lithium-ion batteries with enhanced electrochemical performance[J]. Journal of Alloys and Compounds, 2018, 735:319-326.

[30] LI S, CHEN C, FU K, et al. Nanosized Ge@CNF, Ge@C@CNF and Ge@CNF@C composites via chemical vapour deposition method for use in advanced lithium-ion batteries[J]. Journal of Power Sources, 2014, 253, 366-372.

[31] FU K, XUE L, YILDIZ O, et al. Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries[J]. Nano Energy, 2013, 2(5): 976-986.

[32] SHU J, MA R, SHUI M, et al. Facile fabrication of conducting hollow carbon nanofibers/Si composites for copper phthalocyanine-based field effect transistors and high performance lithium-ion batteries[J]. RSC Advances, 2012, 2: 8323-8331.

[33] FANG S, SHEN L, ZHANG X. Application of carbon nanotubes in lithium-ion batteries[M]. Elsevier Inc, 2017: 251-276

[34] YU W, LIU C, HOU P, et al. Lithiation of silicon nanoparticles confined in carbon nanotubes[J]. ACS Nano, 2015, 9(5): 5063-71.

[35] ZHAO T, SHE S, JI X, et al. In-situ growth amorphous carbon nanotube on silicon particles as lithium-ion battery anode materials[J]. Journal of Alloys and Compounds, 2017, 708: 500-507.

[36] MEHRALI M, LATIBARI S T, MEHRALI M, et al. Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energy storage[J]. Energy Conversion & Management, 2014, 88 (5): 206-213.

[37] AN W, FU J, SU J, et al. Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes[J]. Journal of Power Sources, 2017, 345(31): 227-236.

[38] ZENG S, YAO Y, ZENG X, et al. A composite of hollow carbon nanospheres and sulfur-rich polymers for lithium-sulfur batteries[J]. Journal of Power Sources, 2017, 357(31): 11-18.

[39] ZHOU Y, GUO H, YANG Y, et al. Facile synthesis of silicon/carbon nanospheres composite anode materials for lithium-ion batteries[J]. Materials Letters, 2016, 168: 138-142.

[40] PARK S W, SHIM H W, KIM J C, et al. Uniform Si nanoparticle-embedded nitrogen-doped carbon nanofiber electrodes for lithium ion batteries[J]. Journal of Alloys and Compounds, 2017, 728: 490-496

[41] LEI C, HAN F, LI D, et al. Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes[J]. Nanoscale, 2013, 5: 1168-1175.

[42] WEN Z, LU G, CUI S, et al. Rational design of carbon network cross-linked Si-SiC hollow nanosphere as anode of lithium-ion batteries[J]. Nanoscale, 2014, 6: 342-351.

[43] SHIN W H, JEONG H M, KIM B C, et al. Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity[J]. Nano Letters, 2012, 12: 2283-2288.

[44] JEONG H M, LEE J W, SHIN W H, et al. Nitrogen-doped grapheme for high-performance ultra capactors and the importance of nitrogen-doped sites at basal planes[J]. Nano Letters, 2011, 11: 2472-2477.

[45] SHEN X, JIANG W, SUN H, et al. Ionic liquid assist to prepare Si@N-doped carbon nanoparticles and its high performance in lithium ion batteries[J]. Journal of Alloys and Compounds, 2017, 691: 178-184

[46] WU W J, LIANG Y H, MA H Y, et al. Insights into the conversion behavior of SiO-C hybrid with pre-treated graphite as anodes for Li-ion batteries[J]. Electrochimica Acta, 2016, 187: 473-479.

[47] CHEN M, WANG Z L, WANG A N, et al. Huang, Novel self assembled natural graphite based composite anodes with improved kinetic properties in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4: 9865-9872.

[48] JUNG H, KIM K S, PARK S E, et al. The structural and electrochemical study on the blended anode with graphite and silicon carbon nano composite in Li ion battery[J]. Electrochimica Acta, 2017, 245: 791-795.

[49] YANG J, ZHOU X, LI J, et al. Study of nano-porous hard carbons as anode materials for lithium ion batteries[J]. Materials Chemistry and Physics, 2012, 135: 445-450.

[50] WANG Z, MAO Z, LAI L, et al. Sub-micron silicon/pyrolyzed carbon@natural graphite self-assembly composite anode material for lithium-ion batteries[J]. Chemical Engineering Journal, 2017, 313: 187-196.

[51] TOKUR M, ALGUL H, UYSAL M, et al. Electrolytic coating of Sn nano-rods on nickel foam support for high performance lithium ion battery anodes[J]. Surface&Coatings Technology, 2016, 288: 62-68.

[52] TOKUR M, ALGUL H, OZCAN S, et al. Closing to scaling-up high reversible Si/rGO nanocomposite anodes for lithium ion batteries[J]. Electrochimica Acta, 2016, 216: 312-319.

[53] YI R, ZAI J, DAI F, et al. Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries[J]. Nano Energy, 2014, 6: 211-218.

[54] PAN Q, ZUO P, LOU S, et al. Micro-sized spherical silicon@carbon @graphene prepared by spray drying as anode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 723: 434-440.

[55] GUZMAN R C D, YANG J, CHENG M M C, et al. Effects of graphene and carbon coating modifications on electrochemical performance of silicon nanoparticle/graphene composite anode[J]. Journal of Power Sources, 2014, 246: 335-345.

原標(biāo)題:鋰離子電池硅碳負(fù)極材料的制備與應(yīng)用


    華維測(cè)控技術(shù)工程有限公司主要承擔(dān)鶴煤集團(tuán)煤礦選煤設(shè)備及煤礦自動(dòng)化系統(tǒng)的設(shè)計(jì)、研發(fā)、生產(chǎn)、銷(xiāo)售,技術(shù)力量雄厚,機(jī)加工藝完善,設(shè)備檢驗(yàn)及使用環(huán)境標(biāo)準(zhǔn)規(guī)范。
    煤倉(cāng)雙置式振動(dòng)破拱排料器致力于解決煤倉(cāng)/料倉(cāng)/結(jié)拱/堵塞/破拱/疏通/排料等技術(shù)難題,替代空氣炮解決爐前倉(cāng)結(jié)拱堵塞/溜槽結(jié)拱堵塞/煤倉(cāng)結(jié)拱堵塞/原煤倉(cāng)結(jié)拱堵塞/混煤倉(cāng)結(jié)拱堵塞/緩沖倉(cāng)結(jié)拱堵塞/料倉(cāng)結(jié)拱堵塞/原料倉(cāng)結(jié)拱堵塞/裝車(chē)站結(jié)拱堵塞等疏通排料技術(shù)難題。
     地址:鶴壁市 高新技術(shù)開(kāi)發(fā)區(qū) 金山工業(yè)區(qū) 淇山路39號(hào)
     郵 編:458030
     中 繼:0392-3280885(四線(xiàn)) 
     咨 詢(xún):13603920885
     電  話(huà):0392-3280885
     傳 真:0392-3282885
     郵 箱:farvict@126.com
網(wǎng)站首頁(yè)  |  走進(jìn)華維  |  人才招聘  |  新聞中心  |  產(chǎn)品展示  |  榮譽(yù)資質(zhì)  |  聯(lián)系我們  |  網(wǎng)站地圖
公司電話(huà):0392-3280885  |  手機(jī):13603920885  |  聯(lián)系人:張經(jīng)理
地址:鶴壁市淇濱區(qū)金山工業(yè)區(qū)淇山路39號(hào)
版權(quán)所有:華維測(cè)控技術(shù)工程有限公司  |  備案號(hào):豫ICP備10003718號(hào)-1