摘 要: 本文對(duì)鋰離子電池中硅碳負(fù)極材料的納米結(jié)構(gòu)、摻雜改性以及三元復(fù)合材料的電化學(xué)性能及相關(guān)機(jī)理進(jìn)行了總結(jié),目的是研究不同改性方法對(duì)硅碳負(fù)極材料的電化學(xué)性能的影響,以找到較為優(yōu)異的硅碳負(fù)極改性方法.經(jīng)過(guò)對(duì)比我們發(fā)現(xiàn),在已被研究的各種硅碳負(fù)極材料中,通過(guò)采用納米結(jié)構(gòu)、雜原子摻雜以及三元復(fù)合的方法均可顯著提升硅碳負(fù)極材料的電化學(xué)性能.后對(duì)硅碳負(fù)極材料發(fā)展現(xiàn)狀進(jìn)行了簡(jiǎn)要分析,并對(duì)其研究前景進(jìn)行了展望.
目錄:
1 硅碳負(fù)極材料的合成
2 硅碳負(fù)極材料
3 摻雜型硅碳負(fù)極材料
4 展望
隨著能源技術(shù)的更新?lián)Q代,在電子、可再生能源系統(tǒng)和電動(dòng)汽車(chē)等各個(gè)領(lǐng)域,滿(mǎn)足日益增長(zhǎng)的能源需求越來(lái)越迫切.鋰離子電池因其具有較高的容量和穩(wěn)定的循環(huán)壽命,被認(rèn)為是滿(mǎn)足便攜式電子器件、電動(dòng)及混合動(dòng)力汽車(chē)日益增加的能源需求的新型電源[1-4].在不同負(fù)極材料中,硅的理論比容量(高可達(dá)4 200 mA˙h g-1)是傳統(tǒng)碳負(fù)極理論比容量(約372 mA˙h g-1)的10倍,這吸引了極大的關(guān)注,且硅較低的脫嵌鋰電位(<0.5 V vs. Li/Li+)使得鋰離子電池能獲得更高的功率[5].但是,由于硅負(fù)極材料較低的導(dǎo)電性和嚴(yán)重的體積膨脹(>300%),硅顆粒發(fā)生開(kāi)裂和粉碎,因?yàn)榛钚圆牧系膿p耗和不良的電接觸導(dǎo)致了緩慢的動(dòng)力學(xué)性能和短暫的循環(huán)壽命,故硅負(fù)極材料在鋰電池中的應(yīng)用并不可觀(guān)[6].納米管、納米線(xiàn)、納米棒、納米片、多孔、中空或帶防護(hù)涂層的封裝硅顆粒等硅納米結(jié)構(gòu)通常應(yīng)用于硅基負(fù)極材料的改善結(jié)構(gòu)和電學(xué)性能結(jié)構(gòu)[7-8].另外,制備這些納米結(jié)構(gòu)的方法(如氣-液-固法,磁控濺射和化學(xué)氣相沉積)都有技術(shù)復(fù)雜和步驟多等缺點(diǎn)[9-10].石墨和多孔碳因在鋰化過(guò)程中體積變化相對(duì)較小(如石墨的體積膨脹率僅為10.6%)且具有良好的循環(huán)穩(wěn)定性和電導(dǎo)率而成為極具潛力的負(fù)極材料.與硅材料相比,碳材料具有與其相似的性質(zhì),且它們可以緊密結(jié)合,所以碳材料自然地被選為用于分散硅顆粒的襯底材料(即分散載體)[11-12].通過(guò)硅碳復(fù)合,鋰離子電池可獲得更高的比容量、更好的導(dǎo)電性與循環(huán)穩(wěn)定性 [13].
本文主要研究了各種鋰離子電池硅碳復(fù)合負(fù)極材料的合成、結(jié)構(gòu)和電化學(xué)性能,綜述了硅碳負(fù)極材料的研究現(xiàn)狀.
1 硅碳負(fù)極材料的合成
1.1氣相沉積法
氣相沉積法包括化學(xué)氣相沉積法(CVD)和物理氣相沉積法(PVD).CVD是一種用于生產(chǎn)高質(zhì)量、高性能的固體材料的化學(xué)過(guò)程,這個(gè)方法通常應(yīng)用于半導(dǎo)體領(lǐng)域的薄膜制造.PVD是一種真空沉積法,可以用來(lái)制作薄膜和涂層.PVD是材料從凝聚態(tài)轉(zhuǎn)變?yōu)闅鈶B(tài),然后再轉(zhuǎn)變?yōu)槟蹜B(tài)薄膜的一個(gè)過(guò)程.常見(jiàn)的PVD過(guò)程是濺射和蒸發(fā).PVD常用于制造具有機(jī)械、光學(xué)、化學(xué)或電學(xué)性能的薄膜 [14].
1.2高溫固相合成
高溫固相合成是一種在高溫(1 000~1 500 ℃ )下,通過(guò)固體界面之間的接觸、反應(yīng)、成核和晶體生長(zhǎng)反應(yīng)生成大量的復(fù)合氧化物的方法.高溫固相合成應(yīng)是制備硅碳復(fù)合材料一種常用方法,為了防止惰性相硅碳的生成,反應(yīng)溫度通?刂圃1200 ℃ [15].在反應(yīng)過(guò)程中,溫升速率、反應(yīng)前驅(qū)物的選擇和反應(yīng)溫度的高低將直接影響材料的結(jié)構(gòu)和性能.高溫固相合成技術(shù)因工藝簡(jiǎn)單,工藝參數(shù)易于控制,重現(xiàn)性好而被廣泛應(yīng)用.
1.3機(jī)械合金化
與高溫固相合成法相反,機(jī)械合金化法制備的材料通常具有更小的粒度,更大的比表面積和更均勻的組織[16].機(jī)械合金化是一種固態(tài)粉末加工技術(shù),涉及重復(fù)冷焊、壓裂和在高能球磨機(jī)中重新焊接混合粉末粒子,從而獲得均勻材料的方法,已被證明能夠從混合元素或預(yù)合金粉末中合成各種平衡和非平衡合金相[17].
1.4靜電紡絲
靜電紡絲是一種利用靜電來(lái)噴射聚合物溶液或聚合物的帶電細(xì)絲的纖維生產(chǎn)方法,其直徑一般為幾百納米.靜電紡絲技術(shù)融合了電噴涂和傳統(tǒng)的溶液干法紡絲纖維的優(yōu)點(diǎn)[18].該過(guò)程不需要使用化學(xué)凝固或高溫來(lái)從溶液中產(chǎn)生紡絲,這使得該工藝特別適用于大而復(fù)雜的微粒生產(chǎn)纖維 [19-20].靜電紡絲技術(shù)是可利用各種材料制備納米纖維的一種低成本、工藝簡(jiǎn)單的通用方法,改進(jìn)工藝后的同軸靜電紡絲技術(shù)可制備納米管和核殼結(jié)構(gòu)納米纖維[21].
2 硅碳負(fù)極材料
碳納米材料因其獨(dú)特的性能而有著許多技術(shù)應(yīng)用,包括輕量化構(gòu)造、電子、能源、環(huán)保、醫(yī)藥等領(lǐng)域[22-23].納米材料的物理和化學(xué)性能不同于普通材料甚至更優(yōu)于普通材料,這些優(yōu)異的性能通常由材料組織的微結(jié)構(gòu)決定[24-25].碳材料因其良好的機(jī)械特性,高導(dǎo)電性和化學(xué)穩(wěn)定性,在無(wú)黏結(jié)劑電極和輕質(zhì)電極研究領(lǐng)域備受關(guān)注.近年來(lái),納米線(xiàn)、納米纖維、納米管、納米球等硅碳納米結(jié)構(gòu)經(jīng)常被應(yīng)用于鋰離子電池中.
2.1硅碳納米線(xiàn)
納米線(xiàn)是納米級(jí)應(yīng)用的一種,產(chǎn)業(yè)化的納米線(xiàn)直徑分布在50~100 nm[26].圖1為碳硅核殼納米線(xiàn)的SEM形貌. 將非晶硅包覆在碳納米線(xiàn)上制備的碳硅核殼納米線(xiàn)材料[27]作為高功率和長(zhǎng)壽命鋰電池負(fù)極的容量可達(dá)2 000 mA˙h g-1且具有良好的循環(huán)壽命.
圖1 碳硅核殼納米線(xiàn)的SEM形貌[27]
Fig.1 SEM image of C-Si NWs after 5 cycles [27]
該材料初始庫(kù)倫效率為90%,隨后周期的庫(kù)倫效率仍高達(dá)98%~99.6%.研究發(fā)現(xiàn),均勻和完整的碳涂層可以緩解硅納米線(xiàn)完全鋰化產(chǎn)生的膨脹. 催化生長(zhǎng)的碳納米纖維(CNFs)的應(yīng)用已經(jīng)有十幾年.碳納米纖維已經(jīng)產(chǎn)業(yè)化,且具有良好的機(jī)械強(qiáng)度,高的導(dǎo)熱性和導(dǎo)電性[28,29].混合納米結(jié)構(gòu)Si/CNFs負(fù)極在比容量和循環(huán)壽命方面表現(xiàn)出優(yōu)越的性能.碳納米纖維不僅提供了良好的應(yīng)變/應(yīng)力松弛層,而且還提供了電子的傳輸途徑[30-31].
2.2 硅碳納米纖維
Shu等[32]利用CVD法研制了空心CNFs/Si復(fù)合材料,所得的負(fù)極材料具有優(yōu)異的倍率特性.在0.6 C下,CNFs/Si電極的初始放/充電容量分別為1 197.8和941.4 mA˙h g-1,循環(huán)20周期后的可逆充電容量為733.9 mA˙h g-1,其容量保持率高達(dá)77.9%.CNFs/Si負(fù)極材料表現(xiàn)出優(yōu)異的電化學(xué)性能,其不僅提供硅顆粒之間的導(dǎo)電橋和集電器,也作為一個(gè)抑制硅顆粒體積膨脹的緩沖區(qū).
圖2 純硅與CNFs/Si循環(huán)前后電極結(jié)構(gòu)比較[32].
Fig.2 Comparison of pure Si and CNFs/Si electrodes before and after cycling[32].
2.3硅碳納米管
近年,許多研究熱點(diǎn)都集中在基于碳納米管的鋰電池負(fù)極材料的制備上[33].以往關(guān)于含碳納米管的硅負(fù)極材料的研究主要集中在通過(guò)簡(jiǎn)單的機(jī)械混合、碳納米管在硅材料上的生長(zhǎng)、碳納米管表面硅原子的植入或者在碳納米管薄膜上沉積硅以形成Si/CNT薄膜等來(lái)使硅與碳納米管外表面產(chǎn)生電子連接.但是,由于硅顆粒的不均勻分布,碳納米管的約束效應(yīng)并不令人滿(mǎn)意,使硅在納米空間內(nèi)并沒(méi)有收到碳納米管網(wǎng)絡(luò)的足夠約束[34].Zhao等[35]采用CVD法原位合成了一種硅/非晶碳納米管核殼復(fù)合負(fù)極材料(Si/ACNT).在100 mA g-1下,該電極容量可達(dá)1496 mA˙h g-1,在300個(gè)循環(huán)周期后仍有80%容量保持率,具有良好的循環(huán)穩(wěn)定性.
圖 3 不同尺寸的Si/ACNT復(fù)合材料的TEM圖[35]
Fig.3 TEM images of different microstructure size of the Si/ACNT composite [35]
2.4 硅碳納米球
碳納米球由石墨結(jié)構(gòu)中分布不連續(xù)的玻璃態(tài)石墨層組成[36].由于碳納米球具有高比表面積,良好的化學(xué)穩(wěn)定性和熱穩(wěn)定性等特性,其可以用于制備高強(qiáng)度高密度的碳/碳復(fù)合材料、液相色譜柱、高比表面積活性炭材料、鋰電池負(fù)極材料以及一系列高性能碳材料.碳微球具有很強(qiáng)的吸附能力,可以重復(fù)利用[37-38].
圖4 化學(xué)還原后及未進(jìn)行化學(xué)還原的不同尺寸下的Si/C復(fù)合材料的TEM圖[39]
Fig.4 TEM images of different microstructure size of Si/carbon nanospheres composite [39]
Zhou等[39]用簡(jiǎn)單的化學(xué)方法制備了硅/碳納米球.通過(guò)熱處理,硅顆粒被非晶碳包覆,從而抑制了原始硅的集聚,緩解了硅在循環(huán)過(guò)程中巨大的體積膨脹.在200 mA g-1下,該材料的初始可逆容量為888.6 mA˙h g-1.在50次循環(huán)后,電極的充電容量仍有610.7 mA˙h g-1.在鋰化過(guò)程中,硅碳微球能有效地緩沖硅納米顆粒的體積膨脹/收縮,具有優(yōu)異的電化學(xué)性能和循環(huán)穩(wěn)定性.
3 摻雜型硅碳負(fù)極材料
在摻雜型硅碳負(fù)極材料中,硅和碳緊密地結(jié)合形成了一個(gè)穩(wěn)定均勻的系統(tǒng).在充放電過(guò)程中,硅原子作為電化學(xué)反應(yīng)的活性中心,碳原子作為鋰化的載體.另外,碳載體還可作為電子傳輸通道和支撐結(jié)構(gòu).
3.1氮摻雜型硅/碳負(fù)極材料
由于氮摻雜所造成的缺陷,氮摻雜的碳具有較高的導(dǎo)電性和電化學(xué)活性,并有助于界面中鋰離子的傳輸[40].氮摻雜層可以防止電極材料與電解液的直接接觸且可提高復(fù)合材料和鋰離子在電極和電解液界面上傳輸速率[41].氮摻雜的碳涂層在促進(jìn)和保持穩(wěn)定的SEI層中提供了一個(gè)有效的電子傳輸途徑,促進(jìn)了脫嵌鋰反應(yīng) [42].此外,研究發(fā)現(xiàn)摻雜氮的碳涂層比原始碳涂層有著更高的導(dǎo)電性和鋰離子遷移率[43-44].
Shen等[45]將用離子液體輔助制備的硅@氮摻雜碳(Si@NC)納米顆粒與硅@碳(Si@C)納米顆粒進(jìn)行比較.在420 mA g-1下,經(jīng)過(guò)100次循環(huán)后,所制備的Si@NC復(fù)合材料表現(xiàn)出較高的可逆容量,約為725 mA˙h g-1,是同種方法制備的Si@C材料的兩倍(360 mA˙h g-1).該材料改進(jìn)的電化學(xué)性能得益于納米復(fù)合材料穩(wěn)定的核殼結(jié)構(gòu),更重要的是氮元素?fù)诫s到碳?xì)ぶ?包覆的氮摻雜碳層不僅改善了材料的導(dǎo)電性,且緩解了鋰化過(guò)程體積膨脹產(chǎn)生的應(yīng)力.
圖5 不同電流密度下,Si@N-C、Si@C和Si納米顆粒的循環(huán)性能 [45].
Fig.5 Cycling performance and rate capability of Si@N-doped carbon, Si@C and Si nanoparticles at different current density [45]
3.2硅/碳/石墨負(fù)極材料
硅負(fù)極材料大的缺陷是當(dāng)硅大鋰化時(shí),其體積膨脹率高達(dá)300%[46].減少硅體積膨脹效應(yīng),并充分利用硅超高可逆容量的一種方法是將石墨與其結(jié)合[47].石墨因其良好穩(wěn)定性、低成本、低工作電壓等優(yōu)點(diǎn)成為了新型復(fù)合負(fù)極材料的理想選擇[48].石墨、碳和硅復(fù)合材料可提供可觀(guān)的可逆容量,并可有效減少負(fù)極材料的體積膨脹[49].
Wang等[50]通過(guò)噴霧干燥自組裝法將熱解碳和天然石墨(NG)包覆在亞微米硅片上成功制備了Si/C@NGs復(fù)合材料.該材料的初始昆侖效率高達(dá)82.8%,在0.1 A g-1下循環(huán)100個(gè)周期后仍有1524.0 mAh g-1的容量保留,這種層級(jí)結(jié)構(gòu)的材料與純硅相比有著多層碳涂層和空隙,有效地緩解了硅充放電過(guò)程中的體積膨脹.
圖6 天然石墨顆粒、Si / SAN@NGs、碳化后Si / C@NGs和Si / C@NGs復(fù)合截面的SEM圖 [50].
Fig.6 SEM images of NG particles, Si/SAN@NGs composite, Si/C@NGs composite after carbonization and cross profile of Si/C@NGs composite, respectively[50].
3.3硅/碳/石墨烯負(fù)極材料
近年來(lái),石墨烯由于具有高導(dǎo)電性、高強(qiáng)度、高化學(xué)穩(wěn)定性、超高的比表面積和開(kāi)放的多孔結(jié)構(gòu)等特性,具有對(duì)鋰電池電極材料體積變化的靈活約束作用,被認(rèn)為是有前景的碳材料[51].由于大比表面積、高導(dǎo)電性和良好的放電能力,石墨烯可以提高硅基復(fù)合電極的電化學(xué)性能,改善了大電流密度下的循環(huán)穩(wěn)定性,是一種極具吸引力的碳材料[52-53].
Pan等[54]采用工業(yè)通用的噴霧干燥法和隨后的煅燒工藝制備了硅@碳@石墨烯球形微結(jié)構(gòu)復(fù)合材料(Si@C@RGO).碳?xì)ず腿嵝允┑慕Y(jié)合可有效提高復(fù)合材料的電導(dǎo)率,并可適應(yīng)硅在循環(huán)過(guò)程中巨大的體積變化.在100 mA g-1的低電流密度下,該種材料的初始可逆性為1 599 mA˙h g-1,當(dāng)在200 mA g-1下循環(huán)多次后的容量保持率高達(dá)94.9%.此外,即使在2 000 mA g-1的高電流密度下,Si@C@RGO負(fù)極也仍有951 mA˙h g-1的高可逆比容量.研究證明,石墨烯是一種防止硅在脫嵌鋰過(guò)程中結(jié)構(gòu)變化的有效緩沖元素,且可極大地提高鋰電池的可逆容量、循環(huán)穩(wěn)定性和倍率特性[55].
圖7 Si@C和Si@C@RGO復(fù)合材料電化學(xué)性能比較 [54]
Fig.7 Comparision of the electrochemical performance of Si@C and Si@C@RGO composite[54]
4 展 望
一般來(lái)說(shuō),對(duì)硅碳負(fù)極材料的研究主要是針對(duì)更高能量密度、更大充放電性能、更高循環(huán)穩(wěn)定性和更高安全性鋰離子電池方面的發(fā)展.表面涂覆改性是電極材料制備的基本工藝,可提高材料加工性能,提高電解質(zhì)的相容性,降低不可逆容量,提高初始庫(kù)侖效率.對(duì)材料的比例和循環(huán)性能的改進(jìn)研究主要集中在用摻雜、改性或噴霧干燥等方法對(duì)材料進(jìn)行納米化,提高電子和離子的傳輸速率以改善材料的導(dǎo)電性和穩(wěn)定性.具有良好的機(jī)械彈性、高電導(dǎo)率和化學(xué)穩(wěn)定性的碳材料在鋰離子電池硅碳負(fù)極材料的發(fā)展中具有巨大的潛力.此外,對(duì)于鋰離子電池硅碳負(fù)極材料脫嵌鋰機(jī)理的研究,以及與硅碳材料更相容的粘結(jié)劑和電解液的探索,也是未來(lái)50年的研究熱點(diǎn).
參考文獻(xiàn)
[1] BENAOUADJ M, ABOUBOU A, AYAD M Y, et al. Fuel cells, batteries and super-capacitors stand-alone power systems management using optimal/flatness based-control[J]. Technologies & Materials for Renewable Energy, 2016, 1758 (1): 333-341.
[2] NITTA N, WU F, LEE J T, et al. Li-ion battery materials: present and future[J]. Materials Today, 2015, 18(5): 252-264.
[3] HUANG B, LI X, WANG Z, et al. A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0.8Co0.15Al0.05O2 synthesized by an in situ oxidizing-coating method[J]. Journal of Power Sources, 2014, 252(252): 200-207.
[4] SZCZECH J R, JIN S. Nanostructured silicon for high capacity lithium battery anodes[J]. Energy&Environmental Science, 2011, 4(1): 56-72.
[5] ZHU C, HAN K, GENG D, et al. Achieving high-performance silicon anodes of lithium-ion batteries via atomic and molecular layer deposited surface coatings: an overview[J]. Electrochimica Acta, 2017, 251, 710-728.
[6] WU H, CHAN G, CHOI J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012, 7: 310-315.
[7] LU Z, WONG T, NG T W, et al. Facile synthesis of carbon decorated silicon nanotube arrays as anode material for high-performance lithium-ion batteries[J]. RSC Advances, 2014, 4(5): 2440-2446.
[8] FAN Y, ZHANG Q, XIAO Q, et al. High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology [J]. Carbon, 2013, 59(7): 264-269.
[9] LV Y, WU Z, FANG Y, et al. Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries[J]. Apl Materials, 2014, 2 (11): 366-366.
[10] QIAN J, MA J, HE W, et al. Facile synthesis of prussian blue derivate-modified mesoporous material via photoinitiated thiol-ene click reaction for cesium adsorption[J]. Chemistry-An Asian Journal, 2015, 10 (8):1738-1744
[11] MA T, ZHAO Q, WANG J, et al. A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance regeable lithium-ion battery[J]. Angewandte Chemie, 2016, 55 (22): 6428-6432.
[12] DING W, LEI X, OUYANG C. Coordination of lithium ion with ethylene carbonate electrolyte solvent: A computational study[J]. International Journal of Quantum Chemistry, 2016, 116 (2):97-102.
[13] MA X, LIU M, GAN L, et al. Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(9): 4135.
[14] BÖKE F, GINER I, KELLER A, et al. Plasma-enhanced chemical vapor deposition (PE-CVD) yields better hydrolytical stability of biocompatible SiOx thin films on implant alumina ceramics compared to rapid thermal evaporation physical vapor deposition (PVD)[J]. Acs Applied Materials & Interfaces, 2016, 8 (28):17805-17816.
[15] FUKUI H, OHSUKA H, HINO T, et al. Influence of polystyrene/phenyl substituents in precursors on microstructures of Si-O-C composite anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(1): 371-378.
[16] KUMAR M A, BEYERLEIN I J, LEBENSOHN R A, et al. Role of alloying elements on twin growth and twin transmission in magnesium alloys[J]. Materials Science and Engineering: A, 2017, 706:295-303.
[17] SALLEH E M, RAMAKRISHNAN S, HUSSAIN Z. Synthesis of biodegradable Mg-Zn alloy by mechanical alloying: effect of milling time[J]. Procedia Chemistry, 2016, 19: 525-530.
[18] ZIABICKI A. Fundamentals of fiber formation[M]. John Wiley and Sons, London, 1976.
[19] WANG B, SUN L, WU N, et al. Combined synthesis of aligned SiC nanofibers via electrospinning and carbothermal reduction[J]. Ceramics International, 2017, 43:10619-10623.
[20] WANG P, CHENG L, ZHANG Y, et al. Synthesis of SiC nanofibers with superior electromagnetic wave absorption performance by electrospinning[J]. Journal of Alloys and Compounds, 2017, 716:306-320.
[21] LIU Q, ZHU J, ZHANG L, et al. Recent advances in energy materials by electrospinning[J]. Renewable and Sustainable Energy Reviews, 2017, 81, 1825-1858.
[22] QIANG X, LI H, ZHANG Y, et al. Synthesis and toughening effect of SiC nanowires wrapped by carbon nanosheet on C/C composites[J]. Journal of Alloys and Compounds, 2016, 676:245-250.
[23] DONG Z, MENG J, ZHU H, et al.Synthesis of SiC nanowires via catalyst-free pyrolysis of silicon-containing carbon materials derived from a hybrid precursor[J]. Ceramics International, 2017, 43:11006-11014.
[24] FARHAN S, WANG R, LI K. Characterization of latticed SiC nanowires containing coating for carbon foam using carbonization activated pack cementation process[J]. Journal of Alloys and Compounds, 2016, 682: 695-705.
[25] SHEN Q, LI H, LI L, et al. SiC nanowire reinforced carbon/carbon composites with improved interlaminar strength[J]. Materials Science&Engineering A, 2016, 651:583-589.
[26] YUAN Y, WU L, ZHI J. Carbon nanowires obtained by tempering diamantane dicarboxylic acid inside carbon nanotubes[J]. Angewandte Chemie, 2014, 53: 14326-14351.
[27] CUI L, YANG Y, HSU C, et al. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries[J]. Nano Letters, 2009, 9(9):3370-3375.
[28] ZHOU S, CHEN J, GAN L, et al. Scalable production of self-supported WS2/CNFs by electrospinning as the anode for high-performance lithium-ion batteries[J]. Science Bulletin, 2016, 61(3):227-235.
[29] ZHAO H, YIN H, YU X X, et al. In2O3 nanoparticles/carbon fiber hybrid mat as free-standing anode for lithium-ion batteries with enhanced electrochemical performance[J]. Journal of Alloys and Compounds, 2018, 735:319-326.
[30] LI S, CHEN C, FU K, et al. Nanosized Ge@CNF, Ge@C@CNF and Ge@CNF@C composites via chemical vapour deposition method for use in advanced lithium-ion batteries[J]. Journal of Power Sources, 2014, 253, 366-372.
[31] FU K, XUE L, YILDIZ O, et al. Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries[J]. Nano Energy, 2013, 2(5): 976-986.
[32] SHU J, MA R, SHUI M, et al. Facile fabrication of conducting hollow carbon nanofibers/Si composites for copper phthalocyanine-based field effect transistors and high performance lithium-ion batteries[J]. RSC Advances, 2012, 2: 8323-8331.
[33] FANG S, SHEN L, ZHANG X. Application of carbon nanotubes in lithium-ion batteries[M]. Elsevier Inc, 2017: 251-276
[34] YU W, LIU C, HOU P, et al. Lithiation of silicon nanoparticles confined in carbon nanotubes[J]. ACS Nano, 2015, 9(5): 5063-71.
[35] ZHAO T, SHE S, JI X, et al. In-situ growth amorphous carbon nanotube on silicon particles as lithium-ion battery anode materials[J]. Journal of Alloys and Compounds, 2017, 708: 500-507.
[36] MEHRALI M, LATIBARI S T, MEHRALI M, et al. Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energy storage[J]. Energy Conversion & Management, 2014, 88 (5): 206-213.
[37] AN W, FU J, SU J, et al. Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes[J]. Journal of Power Sources, 2017, 345(31): 227-236.
[38] ZENG S, YAO Y, ZENG X, et al. A composite of hollow carbon nanospheres and sulfur-rich polymers for lithium-sulfur batteries[J]. Journal of Power Sources, 2017, 357(31): 11-18.
[39] ZHOU Y, GUO H, YANG Y, et al. Facile synthesis of silicon/carbon nanospheres composite anode materials for lithium-ion batteries[J]. Materials Letters, 2016, 168: 138-142.
[40] PARK S W, SHIM H W, KIM J C, et al. Uniform Si nanoparticle-embedded nitrogen-doped carbon nanofiber electrodes for lithium ion batteries[J]. Journal of Alloys and Compounds, 2017, 728: 490-496
[41] LEI C, HAN F, LI D, et al. Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes[J]. Nanoscale, 2013, 5: 1168-1175.
[42] WEN Z, LU G, CUI S, et al. Rational design of carbon network cross-linked Si-SiC hollow nanosphere as anode of lithium-ion batteries[J]. Nanoscale, 2014, 6: 342-351.
[43] SHIN W H, JEONG H M, KIM B C, et al. Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity[J]. Nano Letters, 2012, 12: 2283-2288.
[44] JEONG H M, LEE J W, SHIN W H, et al. Nitrogen-doped grapheme for high-performance ultra capactors and the importance of nitrogen-doped sites at basal planes[J]. Nano Letters, 2011, 11: 2472-2477.
[45] SHEN X, JIANG W, SUN H, et al. Ionic liquid assist to prepare Si@N-doped carbon nanoparticles and its high performance in lithium ion batteries[J]. Journal of Alloys and Compounds, 2017, 691: 178-184
[46] WU W J, LIANG Y H, MA H Y, et al. Insights into the conversion behavior of SiO-C hybrid with pre-treated graphite as anodes for Li-ion batteries[J]. Electrochimica Acta, 2016, 187: 473-479.
[47] CHEN M, WANG Z L, WANG A N, et al. Huang, Novel self assembled natural graphite based composite anodes with improved kinetic properties in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4: 9865-9872.
[48] JUNG H, KIM K S, PARK S E, et al. The structural and electrochemical study on the blended anode with graphite and silicon carbon nano composite in Li ion battery[J]. Electrochimica Acta, 2017, 245: 791-795.
[49] YANG J, ZHOU X, LI J, et al. Study of nano-porous hard carbons as anode materials for lithium ion batteries[J]. Materials Chemistry and Physics, 2012, 135: 445-450.
[50] WANG Z, MAO Z, LAI L, et al. Sub-micron silicon/pyrolyzed carbon@natural graphite self-assembly composite anode material for lithium-ion batteries[J]. Chemical Engineering Journal, 2017, 313: 187-196.
[51] TOKUR M, ALGUL H, UYSAL M, et al. Electrolytic coating of Sn nano-rods on nickel foam support for high performance lithium ion battery anodes[J]. Surface&Coatings Technology, 2016, 288: 62-68.
[52] TOKUR M, ALGUL H, OZCAN S, et al. Closing to scaling-up high reversible Si/rGO nanocomposite anodes for lithium ion batteries[J]. Electrochimica Acta, 2016, 216: 312-319.
[53] YI R, ZAI J, DAI F, et al. Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries[J]. Nano Energy, 2014, 6: 211-218.
[54] PAN Q, ZUO P, LOU S, et al. Micro-sized spherical silicon@carbon @graphene prepared by spray drying as anode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 723: 434-440.
[55] GUZMAN R C D, YANG J, CHENG M M C, et al. Effects of graphene and carbon coating modifications on electrochemical performance of silicon nanoparticle/graphene composite anode[J]. Journal of Power Sources, 2014, 246: 335-345.
原標(biāo)題:鋰離子電池硅碳負(fù)極材料的制備與應(yīng)用